gpu.fm

Solutions for Every AI Workload

Pre-configured GPU systems and rack-scale deployments optimized for training, inference, and production AI workloads.

Training Pods

Multi-GPU servers optimized for LLM training and fine-tuning

Configuration

  • 4-8x H100/H200/B200 GPUs
  • NVLink/NVSwitch fabric
  • Dual AMD EPYC CPUs
  • 2TB+ DDR5 RAM
  • 100Gbps+ networking
Performance

Up to 32 petaFLOPS FP8 per node

View detailed specs →
┌────────────────────────────────┐
│  ○    ○    ○    ○    ○    ○   │
├────┬────┬────┬────┬────┬────┤
│ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │
│ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │
├────┼────┼────┼────┼────┼────┤
│ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │
│ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │ ▓▓ │
└────┴────┴────┴────┴────┴────┘
        8x GPU SERVER

Inference Nodes

High-throughput workstations for production AI inference

Configuration

  • 1-4x L40S or RTX 6000 Ada
  • PCIe Gen5 connectivity
  • Intel Xeon or AMD Threadripper
  • 128-512GB RAM
  • NVMe storage arrays
Performance

1000+ tokens/sec for 70B models

View detailed specs →
┌────────────────────────────────┐
│  ╔════════════════════════╗   │
│  ║▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓║   │
│  ║▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓║   │
│  ║▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓║   │
│  ╚════════════════════════╝   │
├────┬────┬────┬────┬────┬────┤
│ ●  │ ●  │ ●  │ ●  │ ●  │ ●  │
└────┴────┴────┴────┴────┴────┘
      H100 80GB HBM3

Rack Systems

Complete rack-scale deployments with power, cooling, and networking

Configuration

  • 42U or 48U racks
  • Redundant PDUs (208V/240V)
  • Hot-aisle containment ready
  • Cable management
  • Optional liquid cooling
Performance

Up to 200kW per rack

View detailed specs →
┌────────────────────────────────┐
│ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐     │
│ │●│ │●│ │●│ │●│ │●│ │●│     │
│ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘     │
│ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐     │
│ │○│ │○│ │○│ │○│ │○│ │○│     │
│ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘     │
└────────────────────────────────┘
         400G SWITCH

Need a Custom Configuration?

Our team can design a solution tailored to your specific workload and budget.